
Abstract This article reviews the role of dendritic
cells in cutaneous immunity. Langerhans cells (LC)
found in the epidermis are the best-characterized den-
dritic cell population. They have the ability to process
antigen in the periphery, transport it to the draining
lymph nodes (DLN) where they are able to cluster with,
and activate, antigen-specific naive T cells. During mi-
gration LC undergo phenotypic and functional changes
which enable them to perform this function. There are
other less well-characterized dendritic cells including
dendritic epidermal T cells, dermal dendrocytes and
dermal ‘LC-like’ cells. Although there is no evidence
that dendritic epidermal T cells (DETC) can present
antigen or migrate to lymph nodes, they do influence
the intensity of cutaneous immune responses to chemi-
cal haptens. Antigen-presenting cells (APC) in the der-
mis may provide alternative routes of antigen presen-
tation which could be important in the regulation of
skin immune responses. Therefore, dendritic cells are
vital for the induction of immune responses to antigens
encountered via the skin. LC are particularly impor-
tant in primary immune responses due to their ability
to activate naive T cells. The faster kinetics of sec-
ondary responses, and the ability of nonprofessional
APC to induce effector function in previously activated
cells, suggest that antigen presentation in the DLN
may be less important in responses to previously en-
countered antigens. In these seondary responses, den-
dritic and nondendritic APC in the skin may directly
induce effector functions from antigen-specific recir-
culating cells.
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Dendritic cells in the skin

The concept that the skin has its own associated immune
system was first proposed in 1978 [1]. Langerhans cells
(LC) are a constituent part of the skin immune system
(SIS), and are found regularly spaced throughout the epi-
dermis, forming a semicontinuous network via long den-
dritic processes. LC are defined by their dendritic mor-
phology and the presence of a unique intracytoplasmic or-
ganelle, the Birbeck granule [2]. In addition to the appear-
ance of LC, they are distinguished by their phenotype, be-
ing the only population in normal epidermis to express
MHC class II (a molecule  involved in the presentation of
exogenous antigen to T cells). They originate from bone
marrow progenitors, as indicated by their CD45 expres-
sion, but are not T-cell derived since they lack the CD3
marker [3]. Human LC express CD1a and stain faintly
with anti-CD1c (Table 1) [4]. CD1 molecules show simi-
larities to MHC class I, and may be involved in the pre-
sentation of antigen to γ/δ T cells.

Another population of dendritic cells (DC) in the skin
is the dendritic epidermal T cell (DETC) which comprise
1–2% of the epidermal cells in rodents [5, 6]. They are
bone-marrow-derived (CD45+), belong to the T-cell lin-
eage (Thy-1+ and CD3+), and express the γ/δ T-cell recep-
tor (TCR) (Table 1). DETC do not express CD4 or CD8
antigens [5], or MHC class II [3]. Their T-cell lineage is
confirmed by evidence that the numbers of DETC are sig-
nificantly reduced in athymic nude mice and that they
proliferate in vitro when stimulated with a mixture of con-
canavalin A and interleukin-2 (IL-2) [5]. γ/δ T-cells are
interesting because they recognize a limited set of epi-
topes including heat shock proteins (HSP), MHC-like
molecules and mycobacterial antigens [7]. However, be-
cause HSP are produced by both bacterial and mammalian
cells, and are highly conserved in both, it has been sug-
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gested that γ/δ T cells may be involved in autoimmune re-
sponses [7]. It has also been proposed that DETC are in-
volved in the induction of tolerance [8], and that the ratio
of DETC to LC in the epidermis influences the intensity,
but not the duration, of sensitization in mice [9].

A third type of DC present in the skin is the dermal
dendrocyte. These cells have been characterized to some
extent by their phenotype (Table 1). In human skin they
are factor XIII antigen+, sometimes express class II anti-
gen [10] and are CD1a+, CD1b+ and CD1c+ [11]. Factor
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Table 1 Phenotype of dendritic cells in the skin (✓ expression, × no expression)

Surface marker Murine LC Human LC DETC Dermal Dermal
dendrocyte ‘LC-like’

MHC class II ✓ [114, 115] ✓ [116] × [7] ✓ [10] ✓ [12]
MHC class I ✓ [115] ✓ [12]
CD45 ✓ [117] ✓ [118] ✓ [5] ✓ [12]
CD3 × [119] ✓ [7] × [12]
Thy-1 × [119] ✓ [120, 121]
γδ TCR × [117] ✓ [122]
ICAM-1 ✓ [79] ✓ [123] × Induced by

(CD54) IFNγ [124]
ICAM-2 × [125]

(CD102)
ICAM-3 (CD50) ✓ [65]
LFA-1 CD11a–/CD18+

(CD11a/CD18) [61]
MAC-1 ✓ [119] ✓ [126] × [124] CD11b– [12]

(CD11b/CD18)
p150/95 ✓ [127] ✓ [126] ✓ [12]

(CD11c/CD18)
LFA-3 (CD58) ✓ Weak [128]
α1 (VLA-1 with ✓ α1β1 weak

β1 chain) on 40% LC [129]
× [130]

α2 (VLA-2- with ✓ α2β1 weak
β1 chain) on 40% LC [129]

× [130]
α3 (VLA-3 with ✓ α3β1 weak

β1 chain) on 40% LC [129]
× [130]

α4 (VLA-4 with ✓ [58] ✓ Weak [128]
β1 chain) ✓ α4β1 [129]

α5 (VLA-5 with ✓ α5β1 [129]
β1 chain) × α5β1 [65]

α6 (VLA-6 with ✓ Weak [128]
β1 chain) ✓ α6β1 [129]

β1 ✓ [130]
CD1a ✓ [4] ✓ [124] ✓ [131]
CD1b ✓ [4]
CD1c ✓ Weak [4] ✓ [131]
CD44 ✓ [58]
Heat-stable ✓ [132]

antigen
E-cadherin ✓ [55] ✓ [133]
FcγRI (CD64)
FcγRII (CD32) ✓ [117] ✓ [131]
FcγRIII (CD16) ✓ [117]
FcεRI ✓ [134]
FcεRII (CD23) × [117] ✓ [134]
εBP (MAC-2) ✓ [134]
CD80 (B7-1) × [93, 94] × [95]
CD86 (B7-2) ✓ Weak [93]

× [65]
Factor XIII ✓ [10]



XIII is involved in scab formation, crosslinking fibrin with
structural proteins, which leads to the conclusion that der-
mal dendrocytes may be of importance in wound healing.
Dermal dendrocytes surrounding the microvasculature in
the skin have been called veil cells [10]. Both populations
share a common phenotype, but while dermal dendrocytes
show both ‘dendritic’ and ‘fibroblast-like’ morphology,
veil cells are thought to show only ‘fibroblast-like’ mor-
phology [10]. It has been suggested that dermal dendro-
cytes are immature precursors of LC. If LC are conti-
nuously being replaced by blood-borne bone-marrow-de-
rived DC precursors, then veil cells which are concen-
trated around the microvasculature, may be DC precursors
entering the skin. Besides the dermal dendrocytes, there
are other cells in the dermis of mice which express MHC
class II, with one subset showing an LC-‘like’ phenotype
(Table 1) [12].

Cutaneous immune responses

Contact hypersensitivity (CH) responses are commonly
used as a model to test an animal’s or a human’s ability to
mount a cutaneous immune response. To induce contact
sensitivity, the experimental animal is sensitized to a spe-
cific hapten by painting a solution containing the chemi-
cal onto the skin. Haptens are small molecules which by
themselves are nonimmunogenic, but which can act as
epitopes when bound to a protein ‘carrier’. In the skin
haptens acquire immunogenicity by binding to endoge-
nous proteins, which results in the generation of a hap-
ten/protein-specific immune response. Approximately 5
days after the original hapten sensitization, the animal is
challenged with a subinflammatory concentration of hap-
ten which within 24 h leads to the generation of a cell-me-
diated inflammatory response at the site of application.
The site of challenge is usually the ears or the foot pad, as
it is easy to quantitate the inflammatory reaction by mea-
suring the increase in ear or footpad thickness. Delayed
hypersensitivity (DH) responses are broadly similar, but
they differ from CH in that the antigen is not a hapten and
is administered intradermally. DH inflammatory reactions
are characterized by the infiltration of mononuclear cells
into the dermis with less cellular infiltration into the epi-
dermis compared with CH responses.

Evidence suggesting that Langerhans cells play 
an important role in cutaneous immunity

The first clues that LC are involved in cutaneous immu-
nity came from experiments examining contact sensitivity
responses in mice. When haptens were applied through
sites naturally deficient in LC expression, such as the ham-
ster cheek pouch epithelium and mouse tail skin, specific
unresponsiveness to hapten challenge was observed [13,
15]. It was noted that a regime of UVB treatment could
artifically deplete LC from normal skin sites [13]. Four
consecutive doses of UVB radiation (100 J/m2 per day)

caused a highly significant depletion of ATPase+ epider-
mal LC in mice [13]. Haptens applied to UVB-treated
skin induced hapten-specific unresponsiveness on subse-
quent exposure at an unirradiated site [13]. The ability of
UVB to induce unresponsiveness was dependent on the
strain of mouse used, leading to the classification of UVB
‘susceptible’ and ‘resistant’ strains. The evidence for this
is not as strong as it once was, since resistant strains show
significant reduction of CH responses when mice are sen-
sitized with optimal doses of hapten via irradiated skin
[16].

These results led to the hypothesis that the suppression
of CH is directly related to loss of the epidermal LC.
However, there are a number of observations which sug-
gest that other factors are involved also. Firstly, LC are
depleted from the epidermis of both susceptible and resis-
tant mouse strains following low-dose UVB treatment
[17]. However, resistant mice are able to generate re-
sponses to haptens encountered through the depleted skin.
Thus, there may be other antigen-presentation pathways
available for cutaneous immunity, a concept which is ex-
plored more fully later in this review. Secondly, specific
tolerance is generated to haptens applied through irradi-
ated skin. This was demonstrated in mice first sensitized
to a hapten through skin naturally deficient in LC, or irra-
diated skin, which showed suppressed immune responses
even after they were sensitized again through normal skin
prior to challenge [13]. Tolerance generated in this way is
associated with the induction of regulatory/suppressor T
cells which can transfer suppression of CH [18] and DH
responses [19]. Antigen presentation may be taking place
but there are likely to be differences in the presentation of
antigen encountered via skin depleted of LC (at least in
susceptible strains). Thirdly, the immunosuppression gen-
erated by UVB is not always confined to skin sites de-
pleted of LC. To examine the local and systemic effects of
UVB, mice were exposed to a suppressive dose of UVB,
and a contact sensitizer was then painted on to the irradi-
ated site or a distant unirradiated site [20]. When the sen-
sitizer was painted on the skin immediately after the last
irradiation, immunosuppression was limited to haptens
applied directly to the irradiated site. However, 3 days af-
ter the last exposure, there was systemic immunosuppres-
sion to haptens applied via unirradiated skin. This evi-
dence suggests that UVB exerts systemic as well as local
effects on cutaneous immunity, possibly via soluble medi-
ators.

Antigen processing in the epidermis

The first stage in the recognition of antigen by the immune
system is the processing of that antigen by antigen pre-
senting-cells (APC). Processing refers to the internaliza-
tion and degradation of antigen into immunogenic peptide
fragments that can be presented with MHC molecules; it
takes place intracellularly in acidified endosomes/lyso-
somes, although the exact compartment where peptides
and MHC class II associate has not been fully defined.
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Freshly isolated murine LC are able to process and pre-
sent the protein ovalbumin (OVA) in its native form, to an
OVA peptide-specific MHC-restricted T-cell hybridoma
in vitro, an ability which is lost during culture [21]. LC
taken from the epidermis and cultured for 72 h are much
less efficient at processing native OVA [21]. Similarly, the
ability to process antigen from Leishmania major (L, major)
amastigotes is found in freshly isolated murine epidermal
LC, but is lost after 12 h in culture [22]. Haptens such as
nickel are able to bind MHC class II-associated peptides
directly [23], suggesting that antigen processing may not
be required for all forms of contact sensitization.

As LC have phagocytic activity when freshly isolated,
it seems likely that epidermal LC have the capacity to
process native antigen in vivo. In contrast, like cultured
LC, murine lymph node DC are generally poorly phago-
cytic, although freshly isolated splenic DC show phago-
cytic activity for zymosan and latex beads [24]. Prior to
the work on freshly isolated LC, the lack of phagocytic
activity in lymphoid DC led to speculation about the iden-
tity of the cell population that processed antigen in the
epidermis with the suggestion that keratinocytes may pro-
vide this function [25, 26]. Since freshly isolated LC are
capable of phagocytosis, it seems unlikely that epidermal
LC would require a source of peptides. However, process-
ing by keratinocytes may affect the immune response, de-
pending on whether the peptide fragments are degraded,
released into the extracellular matrix or presented on the
surface of keratinocytes. Although keratinocytes do not
express MHC class II molecules constitutively, they can
be induced to do so by interferon-γ (IFNγ) [27]. MHC
class II-bearing keratinocytes can provide accessory func-
tion for T cells that have been stimulated previously with
superantigens or anti-CD3 monoclonal antibody [27].
Keratinocytes are therefore equipped to play an important
role in secondary, but not primary, immune responses.

Birbeck granules: markers of antigen processing?

The endocytosis of the CD1 molecule on human LC has
been demonstrated using immunogold-labelled anti-CD1
monoclonal antibody and electron microscopy [28, 29].
LC were incubated at various temperatures. At 4°C there
was diffuse labelling over the entire cell surface. When
the temperature was raised to 15°C, the cell surface la-
belling was concentrated in clathrin-coated pits and there
was internalization of the label in endosomes. At 37°C
lysosomes were labelled, and isolated labelled Birbeck
granules were visible in the cytoplasm. Another study has
examined the endocytosis of Ia antigen by Birbeck gran-
ule-like structures in murine DC [30]. Gold-labelled Ia
molecules were internalized within Birbeck granules when
LC were incubated at 21°C. After 30 min the Birbeck
granules disappeared, and the gold label was associated
with lysosomes and vacuoles, with aggregates of gold
particles on the cell surface. The experiments suggest that
Birbeck granules may be important in receptor-mediated
endocytosis and intracellular antigen processing. How-

ever, there is some evidence that Birbeck granules may
not be an absolute requirement for the functional activity
of LC. A healthy male subject whose LC lack Birbeck
granules has been identified [31]. The LC were present in
normal numbers in the skin and expressed CD1a and
MHC class II. Functionally, the LC were normal as mea-
sured by their ability to induce CH responses in vivo and
alloresponses in vitro.

Induction of LC migration

To induce a primary immune response, antigen processed
by epidermal cells has to be transported to the local drain-
ing lymph node (DLN), where competent antigen-bearing
APC can stimulate MHC-restricted proliferation and dif-
ferentiation of antigen-specific T-cell clones. There is
good evidence, that will be presented later in this section,
that antigen-bearing LC are able to transport antigen to
the DLN. Certainly, LC are capable of migration out of
the skin. A number of stimuli cause a loss of LC from the
epidermis including exposure to low-dose UVB radiation
and skin painting with contact sensitizers [14]. Depletion
of murine epidermal LC using these treatments results in
a subsequent accumulation of LC and/or DC in the lymph
nodes draining the treated site [32, 33], which has been at-
tributed to an influx of DC from the skin. However, skin
painting with haptens causes a smaller influx of DC into
lymph nodes that drain nonsensitized sites, in addition to
inducing an increase in DC numbers in DLNs [34]. This
suggests that sensitization may induce systemic LC mi-
gration from untreated skin sites. Alternatively, the sys-
temic effects may be due to entry of non-LC-derived DC
into lymph nodes.

Keratinocytes provide the necessary microenviron-
ment of the epidermis by producing cytokines which are
thought to play an important role in LC migration and dif-
ferentiation. In response to various stimuli, including
UVB radiation and contract sensitizers, keratinocytes ex-
press a wide variety of cytokines [35]. Using PCR, it has
been shown that topical exposure of mice to contact sen-
sitizers results in increased epidermal mRNA for IL-1α,
IL-1β, GM-CSF, TNFα, macrophage inflammatory pro-
tein-2 (MIP-2), interferon-induced protein-10 (IP-10) and
MHC class II [36, 37]. Tolerogens and chemical irritants
also induce an increase in epidermal mRNA for a number
of these cytokines [37].

The induction of IL-1β by contact sensitizers is inter-
esting. The earliest change in cytokine mRNA expression
in the epidermis is IL-1β, found 15 min after hapten ap-
plication [37]. This precedes TNFα mRNA expression
which is found after 30 min [37]. Depletion of epidermal
cell subsets revealed that IL-1β activity is mainly re-
stricted to LC [36]. When IL-1β is injected intradermally,
it causes similar changes in cytokine production to those
that occur after sensitization, with increased expression of
mRNA for IL-1α, MIP-2, IL-10, TNFα and MHC class
II, while intradermal injection of IL-1α or TNFα does not
affect the cytokine pattern [38]. In addition, a neutralizing
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antibody to IL-1β is able to block sensitization [38], sug-
gesting that LC-derived IL-1β is an important initiation
signal for the induction of contact sensitization.

The role of TNFα in the migration of LC from the epi-
dermis is controversial. TNFα is induced in human ker-
atinocytes after exposure to UVB radiation [39] and its
expression is upregulated by sensitizing chemicals [36].
Intradermal injection of TNFα causes an accumulation of
DC in the DLN of mice [40] and a decrease in epidermal
LC numbers [41]. Accumulation of DC in the DLN in-
duced by UVB irradiation, contact sensitizers and contact
irritants is blocked by pretreatment with neutralizing anti-
bodies to TNFα [42, 43]. Evidence suggests that TNFα
may also mediate migration of DC out of the intestine,
measured by counting numbers of DC in lymph collected
from the thoracic duct of mesenteric-lymphadenectomized
rats [44]. Injection of 50 mg endotoxin caused an 8–15
fold increase in DC numbers in the lymph 10–15 h after
injection. As with the epidermis, an injection of neutraliz-
ing antibody directed against TNFα into these rats prior to
the endotoxin abrogated the effects of TNFα. However, in
contrast to these results, TNFα has been suggested to act
on LC by immobilizing them in the epidermis, as an in-
tradermal injection of TNFα prior to sensitization pre-
vented hapten-induced loss of LC from the epidermis, and
so blocked the induction of CH [45].

Other mediators may be involved in reducing the num-
ber of LC in the epidermis. One, which may be specific to
UVB-induced depletion, is cis-urocanic acid (cis-UCA).
Trans-UCA is found in the stratum corneum of the epi-
dermis and is isomerized to cis-UCA by UVB irradiation.
The cis-form is more soluble, being found transiently in
the serum of mice after irradiation [46]. Cis-UCA mimics
some UVB-induced effects on the immune system and
causes depletion of LC from the epidermis of mice. The
latter effect seems to be specific, as the reduction is abro-
gated by prior administration of a monoclonal antibody to
cis-UCA [47]. However, unlike UVB radiation, cis-UCA
applied topically to the skin of mice does not induce an
accumulation of DC in the DLN [33].

The most compelling evidence for epidermal LC mi-
grating to the DLN after antigen challenge, is shown in a
model using nu/nu BALB/C mice grafted with skin from
C3H mice [48]. When the BALB/c mice were contact
sensitized with fluorescein isothiocyanate (FITC) through
the graft tissue, the cells binding FITC in the DLN were
found to be derived from the C3H graft. Isolated FITC-
binding cells from the DLN of BALB/c mice were able to
induce a CH response in C3H but not in BALB/c mice. In
the same study it was found that at least some of the
FITC-binding cells found in the DLN contained Birbeck
granules, a feature used to identify epidermal LC. There-
fore, it can be concluded that some APC in the DLN are
derived from cells in the skin and are LC in origin. How-
ever, in another study there were very few donor MHC
class II+ cells in lymph nodes draining allogeneic skin
grafts [49]. Also, FITC painted on to allogeneic grafts
could be found associated with recipient MHC class II+

cells in the DLN, suggesting that some of the FITC

reaches the lymph node without binding donor APC in the
epidermis [49].

FITC has proved to be a useful hapten in migration
studies. It can be painted on to the skin of a mouse and
FITC-bearing DC can be visualised in the local DLN. In-
creasing the dose of FITC increases both the number of DC
in the DLN [50] and also the amount of FITC displayed
on the surface of the DC [51]. Treatment of mice with
monoclonal antibody to MHC class II depletes Ia+ cells in
the spleen and lymph nodes but not Ia+ LC in the skin
[52]. Skin painting of these mice with FITC resulted in
the appearance of Ia+ FITC bearing cells in the lymph
nodes that could stimulate an FITC-specific hybridoma in
an MHC class II-restricted manner [52].

Although FITC rapidly associates with proteins in
vivo, it has been claimed that FITC an move freely to
lymph nodes without necessarily binding to LC in the epi-
dermis. After ear painting, FITC found in the DLN is as-
sociated predominantly with interdigitating dendritic cells
(IDC). Therefore, free FITC entering lymph nodes would
have to bind IDC with a high affinity. Although FITC is
popular because it can be visualized, other antigens have
also been used to study migration. L. major amastigotes,
administered intradermally, induce migration of DC from
the skin to the DLN. DC isolated from these nodes were
immunostimulatory for L. major-specific T cells [22]. In
other studies in sheep and cattle, the afferent lymph veiled
cells (ALVC) draining a site challenged intradermally
with antigen were collected and used to induce antigen-
specific proliferation [53, 54]. ALVC are discussed below
where this evidence is reviewed more fully.

Mechanisms of LC migration

Although much is unknown about the mechanism of LC
migration, it is likely that adhesion molecules play a role.
It has been postulated that the migration signal acts to al-
ter the phenotype of the epidermal LC, causing them to
exit from the epidermis. Recent evidence has shown that
LC bind to keratinocytes via E-cadherin and that the ex-
pression of this molecule is downregulated on LC during
culture (Table 2) [55]. Since keratinocytes are the pre-
dominant cell population in the epidermis [56], E-cad-
herin could tether LC in the epidermis and may influence
the morphology of LC in the epidermis. Cytokine signals,
which could include TNFα and GM-CSF, may induce the
downregulation of E-cadherin, weaken adhesive bonds
between LC and keratinocytes, and allow migration of LC
from the epidermis. ICAM-1, and to a lesser extent LFA-
1, may have roles in the migration of LC to local lymph
nodes. Intravenous injection of monoclonal antibodies di-
rected against these molecules caused a reduction in the
numbers of FITC+ Ia+ DC found in lymph nodes after
FITC skin painting, and an inhibition of the induction of
CH [57]. Molecules that have been ascribed roles in the
homing and recirculation of cell populations, are upregu-
lated on LC during culture. There is increased expression
of the surface molecules CD44 and α4 integrin (the 
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α-chain of LPAM-1/VLA-4) and ICAM-1 [58]. CD44 is a
transmembrane glycoprotein with a molecular weight
around 85 kDa [59]. Evidence points to this molecule be-
ing involved in cell recirculation by binding specific car-
bohydrate residues on high endothelial venules [60]. VLA-
4 has two ligands, VCAM-1 a cell adhesion molecule in-
duced on endothelium by inflammatory mediators, and the
extracellular matrix protein, fibronectin [60]. Adhesive
interactions between these molecules on differentiated LC
and their ligands may play a role in the migration of LC to
the DLN.

Differentiation of LC

The cytokines produced by keratinocytes after treatment
with haptens or UVB are important in the differentiation
of LC into lymphoid DC. Differentiation of murine LC in
vitro requires the presence of GM-CSF, produced by con-
taminating keratinocytes [61]. Culturing highly purified
murine LC in GM-CSF increases their ability to stimulate

mixed lymphocyte reactions (MLR) and LC purified from
bulk epidermal cell cultures, where contaminating ker-
atinocytes provide cytokines, are also good stimulators of
MLR [62]. This ability is not only due to improved via-
bility and increased Ia expression [62]. If LC are cultured
in the presence of both GM-CSF and IL-1, a twofold en-
hancement in their capacity to stimulate MLR is induced
compared with LC cultured in GM-CSF alone [62]. Fur-
ther evidence of a role for GM-CSF in the differentia-
tion/maturation of LC is provided by the inability of LC
from unprimed mice to induce an immune response to a
tumour-associated antigen, unless the cells are preincu-
bated with GM-CSF [63]. Preincubation of unprimed LC
with IL-1α, TNFα, IFNγ and TGFβ does not affect their
ability to induce a response and, indeed, some combina-
tions of cytokines cause a reduction in the immune re-
sponse [63]. If murine LC are cultured in TNFα alone, the
viability of the cells is maintained but they do not mature
functionally and are poor stimulators of MLR [64]. How-
ever, TNF does induce LC differentiation, causing the
downregulation of macropinocytosis [65]. Culture of hu-
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Table 2 Phenotype of various
dendritic cell populations in
comparison with freshly iso-
lated LC [↑ expression upregu-
lated (compared with LC), ↓
expression downregulated
(compared with LC), ✓ expres-
sion, × no expression]

Surface marker Murine DC Human DC

MHC class II ↑ Lymph node DC [78] ↑ Cultured LC [135]
↑ Cultured LC and spleen
DC [119]
↑ Spleen DC [61]

MHC class I ↑ Spleen and thymic DC [115] ↑ Cultured LC [135]
Spleen DC [61]

CD45 ✓ Blood DC [136]
✓ Blood DC and lymph node
DC [118]

ICAM-1 ↑ Lymph node DC [79] ✓ Blood and tonsil DC [125]

ICAM-2 ✓ Weak blood and tonsil DC [125]

ICAM-3 ✓ [65]

LFA-1 ✓ Spleen DC [137] ✓ Blood DC [136]

MAC-1 ↓ Spleen DC and cultured LC ✓ Weak on blood DC [136]
[119]

P150,95 ✓ Spleen DC [137] ✓ Blood DC [136]
✓ Cultured LC [127] ✓ 25% of spleen DC [126]

LFA-3 ✓ Blood DC [136|

CD1a × Blood DC [136]

CD1b ✓ Weak on blood DC [136]

CD1c × Blood DC [136]

CD44 ↑ Cultured LC [93] ✓ [65]

CD40 ↑ Cultured LC [93] ✓ Cultured LC [138]

Fc Recs ↓ Cultured LC [93] ↓ Cultured LC [138]

CD80 (B7-1) ↑ Cultured LC [93] ↑ Cultured LC [95]

CD86 (B7-2) ↑ Cultured LC [93] ✓ CD34+ progenitors cultured in
GM-CSF and TNFα [99]

E-cadherin ↓ Skin-associated lymph node ↓ Cultured LC [133]
DC [138]



man DC progenitors, CD34+ cells isolated from peripheral
blood, in GM-CSF and TNFα causes their differentiation
into cells with DC activity [66].

Other immunomodulatory cell populations in the skin

LC are the principle APC in the skin, but there is evidence
that other cells can present antigen and affect cutaneous
immune responses. Their contribution to functional anti-
gen presentation may be masked by LC under normal cir-
cumstances. However, when the efficiency of antigen pre-
sentation by LC is impaired by UVB radiation for exam-
ple, then the alternative APC may become important.

One cell population of mice and rats, the Thy-1+ den-
dritic epidermal T cells (DETC), may induce suppressive
immune responses [67] and the ratio of DETC to LC in
the epidermis influences sensitization [9]. Thy-1+ DETC
do not express Ia on the cell surface [17] making MHC
class II-restricted antigen presentation unlikely, and there
is evidence that Thy-1+ DETC do not migrate to the DLN
[41, 68]. Intravenous administration of haptenated Thy-1+

cells into mice suppresses the induction of CH responses
[67, 69]. While in a normal cutaneous response, these
suppressor circuits may act to limit an inflammatory cas-
cade, in LC-depleted skin the major signal from the skin
may be to suppress the response. It is therefore possible
that UVB may be acting via populations other than the LC
to induce immunosuppression of cutaneous immunity.

Secondary antigen-presentation pathways have also been
proposed as an explanation for the UVB resistance found
in certain strains of mice. It has been suggested that UV-
resistant mice possess a second antigen-presentation path-
way, separate from epidermal LC, possibly mediated by
DC in the dermis [70]. Tape-stripped skin which is selec-
tively depleted of epidermal cells, is able to support CH in
UVB-resistant, but not UVB-sensitive, mice. However
surgical excision of hapten-painted skin within 1 h of ap-
plication, which removes both the dermis and epidermis,
prevents the induction of CH. Recently, it has been shown
that dermal cells, haptenated in vitro, from UVB-exposed
UV-resistant mice can transfer CH responses to naive
mice. In contrast haptenated dermal cells from UVB-ex-
posed UV-susceptible strains are unable to transfer CH
and instead induce tolerance [71]. Around 2% of cells in
dermal cell suspensions normally express MHC class II;
after UVB exposure this drops to around 1.4% in both re-
sistant and susceptible strains [71]. However, the results
suggest that in resistant strains the dermal population is
able to provide a secondary antigen-presenting pathway,
while in susceptible strains these cells induce tolerance.
MHC class II+ LC-like interstitial dendritic antigen-pre-
senting cells have been differentiated from dermal macro-
phages [12]. Morphology and phenotype were used to dis-
tinguish these subsets, with the CD11b+, Ly6c (mono-
cyte/endothelial antigen) subset, thought to be dermal
macrophages, having no APC function in syngeneic MLR.
The LC-like cells are found in the perivascular and inter-
stitial dermis of resistant and susceptible strains [12].

Other cell populations, not necessarily dendritic, may
be involved in presentation of antigen from the skin. One
type which appears in the human epidermis during the
elicitation phase of the CH response, consists of CD1–

OKM5+ (CD36 monocyte/platelet marker) MHC class II+

cells [72]. They have been found not to suppress the CH
response and have been shown to be responsible for up to
50% of antigen-presentation capacity during hypersensi-
tivity responses [72]. However, a cell population with the
same phenotype, which is found in the epidermis after ir-
radiation by certain wavelengths of UV (UVB and UVC)
[73], activates a suppressor T-cell population [74]. In an-
other study, UVB induced a loss of cells with LC markers
and the appearance of MHC class II+, CD1a–, CD36+ (on
60% of CD1a– MHC class II+ cells), CD11b+ macro-
phages which may have antigen-presenting activity [75].
Neutrophils (MHC class II–, CD11b+, GR-1+), macrophage-
like APC (MHC class IIhigh, CD11b+) and macrophages
(MHC class IIlow, CD11b–) infiltrate into the murine epi-
dermis after exposure to UVB [76].

Veiled cells

After an appropriate signal, LC migrate into the afferent
lymphatics where they are described as veiled cells (due
to their long actively moving processes which resemble
veils). In one study the afferent lymph ducts of calves
were cannulated, enabling the ALVC to be studied [54].
The ability of the ALVC draining from the site of intra-
dermal antigen challenge [variable surface glycoprotein
(VSG) from Trypanasoma brucei] to stimulate peripheral
blood mononuclear cell (PBMC) proliferation, was mea-
sured in monozygotic bovine twins. It was found that they
induce proliferation in PBMC from VSG-immunized
calves, as rapidly as 30 min after intradermal application
of antigens. There was no proliferation of PBMC from
VSG-naive calves. Similar work has been carried out in
sheep, using the protein antigens OVA and purified pro-
tein derivative (PPD) from bacillus Calmette Guerin [53].
There was a marked proliferation of OVA- and PPD-spe-
cific T-cell lines when incubated with afferent lymph cells
from OVA- and PPD-challenged animals. Afferent lymph
cells collected prior to challenge did not induce signifi-
cant proliferation in the antigen-specific T-cell lines. The
stimulation was antigen specific as the afferent lymph
cells of OVA-challenged sheep did not induce prolifera-
tion of PPD-specific T cells, and vice versa. In addition,
the ability of ALVC to cluster with primary resting T cells
has been described, a property not shared by nonprofes-
sional APC and one of the reasons why antigen presenta-
tion by DC is essential for the initiation of primary re-
sponses.

The draining lymph node

The veiled cells drain into the paracortical area of lymph
nodes where they are called IDC as their dendritic projec-
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tions show extensive contact with surrounding cells. The
IDC present antigen in a MHC-restricted manner to T
cells in the local lymph nodes. T cells which are specific
for the antigen/MHC complex and which receive the cor-
rect signals from the APC (soluble signals and cell-cell in-
teraction) are induced to proliferative and differentiate.

The changes in the phenotype and function of DC as
they migrate to the DLN are thought to be similar to the
changes seen in vitro when freshly isolated epidermal LC
are cultured. Evidence has been presented in an earlier
section showing that LC lose their ability to process na-
tive peptide after being cultured for 72 h [21]. However,
cultured LC are significantly better at stimulating autolo-
gous and allogeneic T-cell responses than are freshly iso-
lated LC. These changes in function are likely to be due to
alterations in the phenotype of LC during their migration
from the skin and their differentiation into DC. The phe-
notype of IDC after migration in vivo is similar to the
phenotype of LC after differentiation in culture. MHC
class II is upregulated on cultured LC [77] and DC iso-
lated from lymph nodes show increased expression com-
pared with epidermal LC [78]. Similarly, ICAM-1 is up-
regulated on cultured epidermal LC [58] and DC isolated
from lymph nodes have higher levels of ICAM-1 than LC
isolated from the epidermis (Table 2) [79]. There are also
changes in morphology during culture with the majority
of LC losing Birbeck granules [80].

Antigen presentation

Antigen presentation is a complex interaction requiring
recognition by the T cell receptor (TCR) of peptide antigen
bound in the groove of an MHC molecule. Other signals
are also required and are provided by soluble cytokines
and adhesive associations between the APC and the T
cells. During a T-cell/APC interaction, binding of the TCR
to the peptide/MHC complex occurs and there are interac-
tions between a variety of adhesion molecules on the T
cell and the APC and their ligands [81].

The ability of DC to initiate primary immune re-
sponses can be explained, in part, by their capacity to
form stable clusters with resting antigen-specific T cells.
Splenic DC from mice form clusters with T cells and B
cells in vitro in the absence of exogenous antigen [82],
while other APC can only cluster with sensitized T cells
[83]. Antigen-independent adhesion between T cells and
the APC precedes antigen-dependent clustering, and may
allow DC to ‘sample’ different T cells [84]. In vitro assays
have shown that clustering occurs prior to, and is essential
for, T-cell proliferation [85]. The interaction between LFA-
1 and its ligands ICAM-1,2,3 and CD2 and LFA-3 may be
important in this first stage of antigen presentation. How-
ever, antibodies to LFA-1 fail to block antigen-indepen-
dent clustering of murine spleen DC although they do
block the function of clusters by causing a decrease in cell
proliferation and cluster stability [86].

The importance of ICAM-1 expression in antigen pre-
sentation has been shown by examining the function of

mutant APC from mice which had an 80–95% reduction
in ICAM-1 expression [87]. The ICAM-1low APC had a
greatly impaired ability to present antigen to T cells. Re-
constitution of ICAM-1 by transfection of the gene into
these cells restored normal antigen presentation. ICAM-1
induced important costimulatory signals through the LFA-
1 molecule on T cells [88]. The ICAM-1/LFA-1 interac-
tion is also necessary in the clustering of T cells with
other cells [89], and some groups have suggested that
antigen-independent adhesion is the first step toward
recognition of the antigen/MHC complex by T cells [81].

There has been much interest recently in the costimu-
latory functions of members of the B7 family which are
ligands for CD28 and CTLA-4 on T cells. B7-2 (CD86)
expression is found within 24 h of activation of human B
cells, while B7-1 (CD80) expression peaks several days
later [90]. B7-2 is found on peripheral blood DC [91],
resting human monocytes and on activated T cells, B cells
and NK cells [92]. CD28 is expressed widely on both hu-
man and mouse resting T cells, while CTLA-4 expression
seems to be limited to activated T cells [90]. While both
B7-1 and B7-2 are ligands for CD28 and CTLA-4, in vivo
interactions may be influenced by the availability of the
ligands. B7-2 is found constitutively at low levels on
murine epidermal LC, and after 24 h in culture there is a
dramatic upregulation in its expression (Table 2) [93]. B7-
1 is not found on epidermal LC normally, but it is induced
(to lower levels than B7-2) during culture [93–95], and is
present on splenic DC [94].

The upregulation of B7-1 and B7-2 during LC culture
and their expression on lymphoid DC suggest the involve-
ment of keratinocyte-derived cytokines. B7-2 upregula-
tion can be partially decreased during culture in the pres-
ence of an anti-GM-CSF antibody [93], which may reflect
a minor role for GM-CSF in the induction of B7-2. Alter-
natively, the isolated LC may have received a signal to
upregulate B7-2 expression during isolation which then
may be difficult to reverse [93]. Lipopolysaccharide does
not seem to upregulate B7-2 on DC although it does in-
crease the expression of B7-2 on macrophages and B cells
[96].

Therefore, both B7-1 and B7-2 are expressed on DC in
lymphoid tissue with upregulation during in vitro culture
of LC, and a connection with APC activity. Freshly iso-
lated LC are less able to stimulate alloresponses than cul-
tured LC [94, 95, 97] and cultured LC induce allore-
sponses similar to freshly isolated LC when B7-1 and B7-
2 interactions are blocked using CTLA4-Ig [95]. CTLA4-
Ig is a fusion protein with the extracellular portion of
CTLA-4 spliced to the constant region of the human IgG1
molecule, which acts as a soluble ligand for B7-1 and B7-
2 [98]. Interestingly, the alloresponse induced by fresh or
cultured LC can be abrogated using CTLA4-Ig and anti-
ICAM-1 [95]. The available evidence suggests that CD86
may be the more important costimulatory molecule in al-
loresponses. The ability of human DC, obtained by cultur-
ing CD34+ peripheral blood progenitor cells with GM-
CSF and TNFα, to induce alloresponses is inhibited by
monoclonal antibodies against CD28 [99]. However,
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though monoclonal antibodies against CD80 have little
effect on the alloresponse, monoclonal antibodies against
CD86 suppress the alloresponse by 70% [99]. When used
together, monoclonal antibodies to CD80 and CD86 cause
a 90% reduction in alloresponse [99]. CTLA4-Ig binding
is completely inhibited in the presence of monoclonals to
CD80 and CD86, suggesting that there is not a third lig-
and for CTLA-4 on DC.

Due to these and other changes in phenotype summa-
rized in Table 2, IDC and cultured LC become specialized
at presenting antigen to T cells, and are efficient at acti-
vating unprimed lymph node cells and in the induction of
alloresponses in vitro [21]. It has been stated that DC are
important in the induction of primary immune responses,
and good evidence for the role of DC in primary immune
responses has been provided using a transgenic mouse
model [100]. Transgenic mice were bred that differed in
the amounts of I-E MHC expressed on the surface of the
major APC populations (DC, B cells and macrophages)
[100]. These mice were then immunized with an I-E-re-
stricted peptide antigen. After 8 days the CD4+ T cells
were removed from lymph nodes draining the site of im-
munization and cultured with the immunizing antigen.
There was a correlation between the in vitro proliferative
response of the CD4+ T cells and the percentage of I-E-
expressing cells in the mouse. However, there was no cor-
relation between I-E expression on B cells or macro-
phages, and the size of the CD4 T-cell recall response.

The fate of the cutaneous DC

DC are not found in the efferent lymph [101] and there are
few FITC-bearing DC left in the DLN 6 days after skin
painting [102]. It seems likely that some system in the
lymph nodes allows the DC to be destroyed without caus-
ing damage to the surrounding cells. The clearance of
large numbers of inflammatory cells during the resolution
of acute inflammation may involve apoptosis of the effec-
tor cells followed by ingestion by macrophages [103]. It is
possible that DC in the DLN, starved of keratinocyte-de-
rived growth factors which would maintain their viability,
undergo apoptosis and are then removed by macrophages
without damaging lymph node tissue. Other mechanisms
may also act to clear DC from lymph nodes such as acti-
vated NK-like cells, or hapten/peptide specific antibody.

Production of a cutaneous immune response

T cells that recognize, and bind to, the specific antigen/
MHC complex on the IDC and receive the necessary co-
stimulatory signals, are induced to proliferate. Activation
signals also induce differentiation of the T cells which un-
dergo changes in both morphology and phenotype. These
T cells exit the lymph node in the efferent lymph and en-
ter the bloodstream via the thoracic duct. Recently, acti-
vated CD45RO+ T cells, the so called memory subset,
have been shown to exhibit specialized recirculation pat-

terns. In the sheep the loss of L-selectin on these cells
means that they are less likely to recirculate to peripheral
lymph nodes and instead they circulate preferentially
through tissue sites including the skin [104].

Commonly, cutaneous immune responses are studied
using CH and DH responses as models. The inflammatory
response generated during challenge with antigen in both
these systems is associated with infiltration of mononu-
clear cells into the skin. Two subsets of CD4 Th cells have
been identified in the mouse: Th1 and Th2 cells [105].
Th1 responses mediate cell-mediated immunity, including
CH and DH responses, which are dependent on IFNγ
[106, 107]. The cytokines produced by Th2 cells are im-
portant in B-cell activation and differentiation and there-
fore these cells preferentially stimulate humoral immu-
nity. Interestingly, the ability of UVB to suppress sensiti-
zation to haptens corresponds to a loss of production of
Th1-type cytokines by lymph node cells taken from
lymph nodes draining irradiated skin [108]. Although a
corresponding increase in Th2-type cytokines has not
been detected, it is possible that UVB induces a functional
inactivation of Th1-type cells. In support of this it has
been shown that the ability of splenic T cells from UV-
treated animals to transfer immunosuppression of DH re-
sponses to normal recipients, can be blocked by neutraliz-
ing antibodies to IL-4 or IL-10 given 4 and 24 h after
transfer [109]. Therefore the suppressive action of these T
cells on cell-mediated DH responses requires the produc-
tion of Th2-type cytokines by the T cells.

Secondary cutaneous responses

The antigen-presenting pathway that has been described,
LC processing antigen in the periphery and presentation
to specific T cells in the DLN, is relevant to all cutaneous
immune responses. However, this mechanism may be aug-
mented by alternative antigen-presentation pathways in a
secondary response, where there will be a pool of acti-
vated or semi-activated T cells specific for the antigen.
Earlier, it was noted that subpopulations of these cells
show preferential recirculation to tissue sites including the
skin. Therefore in a secondary response, T cells could en-
counter antigen in the periphery bound to LC or other
antigen-presenting cell populations such as B cells, macro-
phages and keratinocytes. Memory/activated T cells ex-
pressing CD45RO can be activated by a wide range of
APC, while activation of naive T cells requires DC [110].
Therefore skin-homing populations of T cells, after being
presented with antigen in the periphery, could release in-
flammatory factors that initiate a cascade response lead-
ing to the migration of effector cells through the endothe-
lium into the skin.

There is some evidence that endothelial cells could
present antigen to circulating T cells in the bloodstream.
This mechanism would allow for antigen-specific migra-
tion of T cells into inflammed tissues. Endothelial cells do
not express MHC class II constitutively but this molecule
is highly upregulated during infection and allogeneic
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transplant rejection [111]. Although cultured cells from
virtually any organ can be induced to express MHC class
II, endothelial cells are interesting because of the high de-
gree to which class II can be upregulated by cytokines
such as IFNγ and IL-1 [112]. As well as adhesive interac-
tions, soluble mediators may be important in antigen pre-
sentation. However, cytokines in the blood stream would
be rapidly washed away from the inflammatory site. It has
been suggested that proteoglycans expressed on endothe-
lial cells might act to bind and present soluble cytokines
to circulating leucocytes [113]. Cytokines bind proteogly-
cans at low-intermediate affinity and some cytokines can
specifically bind the glycosaminoglycan sidechains of
proteoglycan [113]. Therefore, it is possible that antigen
could be presented by endothelial cells in the postcapil-
lary venules to recirculating ‘memory’ T cells.

Conclusion

The DC of the skin are very important in the production of
skin immune responses. The migration of antigen-bearing
LC from the epidermis to the DLN and their differentia-
tion into efficient antigen-presenting cells are vital for the
induction of primary immune responses. Other antigen-
bearing cells, including dermal dendritic cells, may mi-
grate in a similar fashion, and may influence immune re-
sponses. The faster kinetics of secondary responses sug-
gest that antigen presentation in the DLN may not be as
important as in primary responses. In this case it is likely
that DC in the skin, together with other APC, initiate and
influence the effector response.
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